direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22×C4.10D4, M4(2).22C23, (C2×C4).2C24, (C23×C4).23C4, (Q8×C23).9C2, C24.126(C2×C4), (C22×C4).776D4, C4.132(C22×D4), (C22×Q8).29C4, C22.15(C23×C4), (C2×Q8).326C23, C23.221(C22×C4), (C23×C4).510C22, (C22×C4).896C23, C23.231(C22⋊C4), (C22×M4(2)).25C2, (C22×Q8).452C22, (C2×M4(2)).332C22, C4.70(C2×C22⋊C4), (C2×C4).1400(C2×D4), (C22×C4).87(C2×C4), (C2×Q8).200(C2×C4), (C2×C4).243(C22×C4), C22.79(C2×C22⋊C4), C2.29(C22×C22⋊C4), (C2×C4).280(C22⋊C4), SmallGroup(128,1618)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 556 in 368 conjugacy classes, 180 normal (9 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×8], C4 [×8], C22, C22 [×10], C22 [×12], C8 [×8], C2×C4, C2×C4 [×35], C2×C4 [×24], Q8 [×32], C23, C23 [×6], C23 [×4], C2×C8 [×12], M4(2) [×8], M4(2) [×12], C22×C4 [×26], C22×C4 [×8], C2×Q8 [×16], C2×Q8 [×48], C24, C4.10D4 [×16], C22×C8 [×2], C2×M4(2) [×12], C2×M4(2) [×6], C23×C4, C23×C4 [×2], C22×Q8 [×12], C22×Q8 [×8], C2×C4.10D4 [×12], C22×M4(2) [×2], Q8×C23, C22×C4.10D4
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C4.10D4 [×4], C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], C2×C4.10D4 [×6], C22×C22⋊C4, C22×C4.10D4
Generators and relations
G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=dcd-1=c-1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ce=ec, ede-1=c-1d3 >
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 9 5 13)(2 14 6 10)(3 11 7 15)(4 16 8 12)(17 63 21 59)(18 60 22 64)(19 57 23 61)(20 62 24 58)(25 43 29 47)(26 48 30 44)(27 45 31 41)(28 42 32 46)(33 51 37 55)(34 56 38 52)(35 53 39 49)(36 50 40 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 60 13 18 5 64 9 22)(2 17 10 59 6 21 14 63)(3 58 15 24 7 62 11 20)(4 23 12 57 8 19 16 61)(25 38 47 56 29 34 43 52)(26 55 44 37 30 51 48 33)(27 36 41 54 31 40 45 50)(28 53 46 35 32 49 42 39)
G:=sub<Sym(64)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,9,5,13)(2,14,6,10)(3,11,7,15)(4,16,8,12)(17,63,21,59)(18,60,22,64)(19,57,23,61)(20,62,24,58)(25,43,29,47)(26,48,30,44)(27,45,31,41)(28,42,32,46)(33,51,37,55)(34,56,38,52)(35,53,39,49)(36,50,40,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,13,18,5,64,9,22)(2,17,10,59,6,21,14,63)(3,58,15,24,7,62,11,20)(4,23,12,57,8,19,16,61)(25,38,47,56,29,34,43,52)(26,55,44,37,30,51,48,33)(27,36,41,54,31,40,45,50)(28,53,46,35,32,49,42,39)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,9,5,13)(2,14,6,10)(3,11,7,15)(4,16,8,12)(17,63,21,59)(18,60,22,64)(19,57,23,61)(20,62,24,58)(25,43,29,47)(26,48,30,44)(27,45,31,41)(28,42,32,46)(33,51,37,55)(34,56,38,52)(35,53,39,49)(36,50,40,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,13,18,5,64,9,22)(2,17,10,59,6,21,14,63)(3,58,15,24,7,62,11,20)(4,23,12,57,8,19,16,61)(25,38,47,56,29,34,43,52)(26,55,44,37,30,51,48,33)(27,36,41,54,31,40,45,50)(28,53,46,35,32,49,42,39) );
G=PermutationGroup([(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,9,5,13),(2,14,6,10),(3,11,7,15),(4,16,8,12),(17,63,21,59),(18,60,22,64),(19,57,23,61),(20,62,24,58),(25,43,29,47),(26,48,30,44),(27,45,31,41),(28,42,32,46),(33,51,37,55),(34,56,38,52),(35,53,39,49),(36,50,40,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,60,13,18,5,64,9,22),(2,17,10,59,6,21,14,63),(3,58,15,24,7,62,11,20),(4,23,12,57,8,19,16,61),(25,38,47,56,29,34,43,52),(26,55,44,37,30,51,48,33),(27,36,41,54,31,40,45,50),(28,53,46,35,32,49,42,39)])
Matrix representation ►G ⊆ GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,16,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,11,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,12,5,0,0,0,0,5,12,0,0,0,0,0,0,12,12,0,0] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | C4.10D4 |
kernel | C22×C4.10D4 | C2×C4.10D4 | C22×M4(2) | Q8×C23 | C23×C4 | C22×Q8 | C22×C4 | C22 |
# reps | 1 | 12 | 2 | 1 | 4 | 12 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_2^2\times C_4._{10}D_4
% in TeX
G:=Group("C2^2xC4.10D4");
// GroupNames label
G:=SmallGroup(128,1618);
// by ID
G=gap.SmallGroup(128,1618);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,2804,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=d*c*d^-1=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations